巨頭們的新戰事:誰能把AI最先裝進“U盤”

蘇建勛 來源:鈦媒體

國內人工智能領域正在技術落地階段展開新一輪的較量。

對于頭部AI公司來說,“場景之爭”正如火如荼——以視覺識別領域為例,在金融領域,云從科技已經拿下超過80%的國有銀行訂單;手機市場,商湯與曠視正在瓜分OPPO、vivo、小米等廠商;而規模最為龐大的安防領域,也出現了商湯、云從、依圖三國鼎立,小廠商夾縫求生的景象。

而在越來越多的場景“AI化”之后,原有的技術架構暴露出的不適應性,則成為倒逼人工智能企業更新底層技術方案的客觀力量。

相隔不到一月,9月20日與10月10日,阿里巴巴華為分別拋下AI領域的重磅炸彈,前者宣布啟動“達爾文計劃”,成立獨立芯片公司“平頭哥”;后者發布“達芬奇項目”,現場亮出昇騰910和昇騰310兩款AI芯片。

縱觀兩家科技巨頭的AI方案,不論是“達爾文”還是“達芬奇”,單點式的AI技術已不再是呈現重點,取而代之的,是將AI與云服務、數據中臺、芯片、基站等模塊進行結合,生成“全棧AI”方案,讓AI以更具象、更低門檻、更產品化的方式進入企業場景。

AI為何要“全棧”?

不論是華為還是阿里,全棧AI的方案提出并不是空穴來風,而是來自市場需求的真實反映。對于所有云計算廠商來說,AI的橫空出世其實解答了長期以來的一個問題——“企業為什么要上云?”

對于為數眾多的傳統企業而言,并不是簡單把服務器從自己的機房搬到云服務商的機房就完成了上云,這一轉換需要強有力的場景來拉動,而AI所需要的彈性海量的算力,以及帶來巨大的顛覆性正好完美契合了這個需求。換句話說,云就是AI最適合的交付方式。

但一個必須承認的事實是,盡管業界討論AI的聲量愈加明顯,但真正實現AI落地的場景依然有限。華為輪值董事長徐直軍公布的一份數據顯示:只有4% 的企業已經投資或部署了AI;約5% 部署的智慧城市中正在使用AI;2017年只有約10%的智能手機內置了AI。

談及華為的全棧AI戰略,華為云總裁鄭葉來始終離不開一個詞“普惠AI”。

“今天的AI開發者面臨兩個難題,一個是慢,一個是貴。”鄭葉來說。

慢,指的是AI部署慢、訓練慢。從升級服務器與數據庫,到搭建機器學習平臺,輸入數據進行學習訓練,讓機器逐漸掌握人類具備的推理、反應等功能,對于一般企業來說,少則數月,多則數年。

貴,指的是設備貴、人才貴。不論是高通、英偉達的芯片還是IBM的小型機,作為訓練人工智能的底層基礎設施,動輒百萬的設備費用成為AI方案落地企業的絆腳石;至于人才貴,從華為公布的全球人才占比可見一斑:

可以說,全棧AI并不是某個企業空想出的解決方案,而是在AI“又貴又慢”的發展現狀下,被迫從人工智能整條產業鏈進行重整的改革方式。

如何理解“全棧AI”?

以華為為例,外界聚焦的兩款芯片只是華為AI戰略中的一環。華為輪值董事長徐直軍按照基礎研究、全棧AI、開放生態、AI思維與內部效率為基準,將華為的AI戰略分為五大方向,具體結構為:

底層是以芯片為代表的硬件:包含Max、Mini、Lite、Tiny和Nano五個系列的華為昇騰(Ascend)芯片家族,其中,已經推出的昇騰910屬于Max系列,昇騰310屬于Mini系列。

中層是算法以及機器學習平臺:支持云端、邊緣、云的統一訓練和TensorFlow、PyTorch等主流推理框架MindSpore,以及芯片算子庫和高度自動化算子開發工具CANN。

上層為應用層:由于任正非曾明確表示華為不會涉足應用,此次華為采用了PaaS的方式,推出ModelArts全流程服務,提供分層API和預集成方案,以滿足不同開發者的需求。

從技術視角來看,所謂“全棧AI”,是指包括芯片、芯片使能、訓練和推理框架和應用使能在內的全堆棧方案,而PaaS、芯片,則成為了用戶可以調用華為AI能力的方式,這就像是一個裝滿了AI開發工具的百寶箱,用戶“開箱”后,就可以很快地上手使用到AI能力。

華為的AI戰略

舉一個具體的例子,此次華為推出了專門針對視覺開發領域的開發者平臺HiLens,當中包含一個帶有攝像頭的物理小盒子,背后與華為云計算系統連接,開發者只要啟動攝像頭,就可以在零售、安防等場合迅速上手人臉識別的能力,這就極大降低了原先的部署門檻。

相比眼下BAT以及一眾AI公司在金字塔單個或多個層面做出的努力,華為基于自身云業務與硬件資源的優勢,將AI從單點式的技術形態,首次完整滲透至公有云、私有云、邊緣計算、物聯網終端以及消費類終端等部署環境,這類全棧式AI的技術落地形式,也將逐步成為AI公司完善底層架構時的重要參考標準。

從AI+云,到全棧AI

不論是華為、阿里巴巴還是去年號稱“All in AI”的百度,一個有趣的現象是,目前能快速響應全棧AI方案的廠商,基本都在云計算領域有著多年深耕經驗。

對于To B廠商來說,AI更像是整套云服務產品中的一個補充模塊,這在最先染指云計算業務的亞馬遜AI方案中有著更為完整地體現。

2006年亞馬遜推出AWS云計算服務時,其宗旨就是將原本造價高昂的云端資源與運算能力,用更彈性、經濟的方式分配給中小企業;到了2015年,亞馬遜開始嘗試將這種資源利用的“民主化”轉移到AI產品,具體的做法包括將內部一些機器學習的服務打包,相繼推出Amazon Machine Learning(機器學習平臺)、Rekognition(圖像識別平臺)、Polly(語音識別平臺)等AI應用。

與亞馬遜類似,同樣是從電商業務延伸至云計算,阿里巴巴的全棧AI也發展得順理成章。

9月下旬的云棲大會,阿里巴巴宣布將今年4月收購的中天微以及旗下的達摩院芯片團隊整合,成立“平頭哥”,預計明年4月發布一款嵌入式神經網絡處理器(NPU)芯片。隨著“平頭哥”的剝離,阿里巴巴也明確了旗下云計算、AI芯片、大數據、應用業務之間的關系。

根據阿里巴巴CTO張建鋒透露,由阿里云承載的電商平臺一天可產生高達600Pb的數據,達摩院需要解決數據從哪里來以及怎么處理的問題,AI芯片要為諸如城市大腦、輔助駕駛、自動駕駛等實際場景提供足夠的端運算能力,最終降低阿里云的業務成本,由此形成一個正向循環。

百度則是由“云+AI”轉向全棧AI的另一典型案例。

2016年7月,百度董事長兼CEO李彥宏發布了百度云“人工智能+大數據+云計算”三位一體的發展戰略;同年11月,百度總裁張亞勤首次將“云、智、數”三位一體戰略總結為ABC(AI,Big Data,Cloud Computing),并表示:“百度AI戰略將通過百度云落地各行各業。”

“從百度內部來說,To B的解決方案全部由百度云的團隊提供,包括地圖、車聯網等數據和百度內部的AI能力,所以我們給客戶看到的是一張臉。”百度云副總經理李碩曾在接受鈦媒體采訪時說。

從2016年至今,百度云的ABC戰略歷經三個階段的迭代。從ABC 1.0時期的技術整合,到ABC 2.0時期對交通、金融、物流等行業小試牛刀的單點輸出,再到今年百度云ABC 3.0進一步將百度內部超過110種AI能力進行整合,并以ABC-STACK、ABC一體機的形式加速交付,可以說,云業務已經成為了百度對外輸出AI的窗口。

AI一體機的興起

在2018年的AI技術演化中,諸如AI芯片、全棧AI、邊緣計算等技術理念的革新,意味著AI已經憑借底層技術端的突破,一步步降低了上層落地應用的門檻。

在這一過程中,還有另一個稍顯晦澀的基礎設施也煥發出新的生機,它就是用以企業傳輸數據、提供算力的底層服務器“一體機”。

從2017年開始,一系列人工智能“一體機”應運而生,包括百度、網易、依圖、中科睿芯、第四范式等AI公司紛紛聯手浪潮、ARM、華為等硬件廠商,推出基于人工智能落地方案的一體機。

浪潮與百度合作推出的AI一體機

第四范式創始人戴文淵曾給鈦媒體打過一個比方:如果將第四范式此前研發的AI平臺“先知”比作一套Windows系統,用戶拿到裝載系統的光盤后,還需要在電腦上花力氣解決系統兼容、穩定性等問題;而現在的“一體機”就好比是裝有AI能力的U盤,即開即用,這就解決了AI落地的最后一公里問題。

9月初,第四范式與浪潮商用機器合作推出AI一體機Prophet AIO,成為市面上首個針對超大規模數據挖掘與機器學習計算問題的AI一體機產品。

為了適配AI落地的技術指標,浪潮將AI一體機中諸如數據傳輸、內存帶寬等指標進行調優,同時支持了Chainer、Tensorflow及Caffe等開源人工智能框架,根據第四范式官方透露,相比普通服務器,Prophet AIO整體性能能提升10倍以上。

“傳統服務器在設備數量、部署門檻方面,還是給AI落地帶去很多阻礙,我們也一直在軟件層面試圖解決這些問題,最后發現硬件是繞不開的環節。”戴文淵對鈦媒體說。他預測,未來采用AI方案的企業,AI一體機與傳統服務器的比例將會是1:10。

可以看出,這類“AI平臺”+“硬件公司”的軟硬一體組合,將極大降低AI方案走進企業場景的門檻,談及兩方在AI落地階段的角色分配,浪潮集團AI&HPC總經理劉軍將浪潮與百度、網易、第四方式等廠商的合作方案總結為兩個方向。

首先,一體機為AI平臺提供了可供底層支撐的產品載體,這就類似于云業務中的計算設備。“單純的AI芯片廠商無法獨立給客戶提供價值,特別是當AI進入行業后,必須要變成一個類似服務器的基礎設施才能運行。”劉軍對鈦媒體說。

其次,當AI從技術轉化為“生意”后,其中涉及的企業級產品經營方法論,并不是百度、網易這類公司具備的,而這恰恰是浪潮、華為這類硬件公司的長處所在。

“在這類AI聯合化的方案中,包括中期交付、軟硬件定制、壓力測試、調優、后續服務等環節都是企業級產品需要承載的價值,這個通道不是互聯網公司熟悉的生意模式,但在我們做企業傳統服務器的時候已經經營很多年了,所以有這個能力可以將AI的價值賦予到終端。”劉軍談到。


1080x640.jpg

掃碼
關注
意見
反饋
返回
頂部
凤凰彩票靠谱吗_凤凰平台网址是什么_凤凰彩票真的还是假的?-【官方网址】